direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3×C32⋊4D9, C33⋊8D9, C34.14S3, (C33×C9)⋊6C2, C32⋊6(C3×D9), C32⋊5(C9⋊S3), (C32×C9)⋊41C6, (C32×C9)⋊30S3, C33.85(C3×S3), C33.51(C3⋊S3), C32.12(C33⋊C2), C3⋊(C3×C9⋊S3), C9⋊3(C3×C3⋊S3), (C3×C9)⋊31(C3×S3), (C3×C9)⋊10(C3⋊S3), C32.52(C3×C3⋊S3), C3.1(C3×C33⋊C2), SmallGroup(486,240)
Series: Derived ►Chief ►Lower central ►Upper central
C32×C9 — C3×C32⋊4D9 |
Generators and relations for C3×C32⋊4D9
G = < a,b,c,d,e | a3=b3=c3=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 1736 in 348 conjugacy classes, 102 normal (10 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, C33, C33, C33, C3×D9, C9⋊S3, C3×C3⋊S3, C33⋊C2, C32×C9, C32×C9, C32×C9, C34, C3×C9⋊S3, C32⋊4D9, C3×C33⋊C2, C33×C9, C3×C32⋊4D9
Quotients: C1, C2, C3, S3, C6, D9, C3×S3, C3⋊S3, C3×D9, C9⋊S3, C3×C3⋊S3, C33⋊C2, C3×C9⋊S3, C32⋊4D9, C3×C33⋊C2, C3×C32⋊4D9
(1 109 25)(2 110 26)(3 111 27)(4 112 19)(5 113 20)(6 114 21)(7 115 22)(8 116 23)(9 117 24)(10 78 42)(11 79 43)(12 80 44)(13 81 45)(14 73 37)(15 74 38)(16 75 39)(17 76 40)(18 77 41)(28 120 133)(29 121 134)(30 122 135)(31 123 127)(32 124 128)(33 125 129)(34 126 130)(35 118 131)(36 119 132)(46 70 84)(47 71 85)(48 72 86)(49 64 87)(50 65 88)(51 66 89)(52 67 90)(53 68 82)(54 69 83)(55 92 106)(56 93 107)(57 94 108)(58 95 100)(59 96 101)(60 97 102)(61 98 103)(62 99 104)(63 91 105)(136 149 157)(137 150 158)(138 151 159)(139 152 160)(140 153 161)(141 145 162)(142 146 154)(143 147 155)(144 148 156)
(1 12 71)(2 13 72)(3 14 64)(4 15 65)(5 16 66)(6 17 67)(7 18 68)(8 10 69)(9 11 70)(19 38 50)(20 39 51)(21 40 52)(22 41 53)(23 42 54)(24 43 46)(25 44 47)(26 45 48)(27 37 49)(28 61 155)(29 62 156)(30 63 157)(31 55 158)(32 56 159)(33 57 160)(34 58 161)(35 59 162)(36 60 154)(73 87 111)(74 88 112)(75 89 113)(76 90 114)(77 82 115)(78 83 116)(79 84 117)(80 85 109)(81 86 110)(91 136 122)(92 137 123)(93 138 124)(94 139 125)(95 140 126)(96 141 118)(97 142 119)(98 143 120)(99 144 121)(100 153 130)(101 145 131)(102 146 132)(103 147 133)(104 148 134)(105 149 135)(106 150 127)(107 151 128)(108 152 129)
(1 77 50)(2 78 51)(3 79 52)(4 80 53)(5 81 54)(6 73 46)(7 74 47)(8 75 48)(9 76 49)(10 89 26)(11 90 27)(12 82 19)(13 83 20)(14 84 21)(15 85 22)(16 86 23)(17 87 24)(18 88 25)(28 100 137)(29 101 138)(30 102 139)(31 103 140)(32 104 141)(33 105 142)(34 106 143)(35 107 144)(36 108 136)(37 70 114)(38 71 115)(39 72 116)(40 64 117)(41 65 109)(42 66 110)(43 67 111)(44 68 112)(45 69 113)(55 147 126)(56 148 118)(57 149 119)(58 150 120)(59 151 121)(60 152 122)(61 153 123)(62 145 124)(63 146 125)(91 154 129)(92 155 130)(93 156 131)(94 157 132)(95 158 133)(96 159 134)(97 160 135)(98 161 127)(99 162 128)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 131)(2 130)(3 129)(4 128)(5 127)(6 135)(7 134)(8 133)(9 132)(10 147)(11 146)(12 145)(13 153)(14 152)(15 151)(16 150)(17 149)(18 148)(19 124)(20 123)(21 122)(22 121)(23 120)(24 119)(25 118)(26 126)(27 125)(28 116)(29 115)(30 114)(31 113)(32 112)(33 111)(34 110)(35 109)(36 117)(37 139)(38 138)(39 137)(40 136)(41 144)(42 143)(43 142)(44 141)(45 140)(46 97)(47 96)(48 95)(49 94)(50 93)(51 92)(52 91)(53 99)(54 98)(55 89)(56 88)(57 87)(58 86)(59 85)(60 84)(61 83)(62 82)(63 90)(64 108)(65 107)(66 106)(67 105)(68 104)(69 103)(70 102)(71 101)(72 100)(73 160)(74 159)(75 158)(76 157)(77 156)(78 155)(79 154)(80 162)(81 161)
G:=sub<Sym(162)| (1,109,25)(2,110,26)(3,111,27)(4,112,19)(5,113,20)(6,114,21)(7,115,22)(8,116,23)(9,117,24)(10,78,42)(11,79,43)(12,80,44)(13,81,45)(14,73,37)(15,74,38)(16,75,39)(17,76,40)(18,77,41)(28,120,133)(29,121,134)(30,122,135)(31,123,127)(32,124,128)(33,125,129)(34,126,130)(35,118,131)(36,119,132)(46,70,84)(47,71,85)(48,72,86)(49,64,87)(50,65,88)(51,66,89)(52,67,90)(53,68,82)(54,69,83)(55,92,106)(56,93,107)(57,94,108)(58,95,100)(59,96,101)(60,97,102)(61,98,103)(62,99,104)(63,91,105)(136,149,157)(137,150,158)(138,151,159)(139,152,160)(140,153,161)(141,145,162)(142,146,154)(143,147,155)(144,148,156), (1,12,71)(2,13,72)(3,14,64)(4,15,65)(5,16,66)(6,17,67)(7,18,68)(8,10,69)(9,11,70)(19,38,50)(20,39,51)(21,40,52)(22,41,53)(23,42,54)(24,43,46)(25,44,47)(26,45,48)(27,37,49)(28,61,155)(29,62,156)(30,63,157)(31,55,158)(32,56,159)(33,57,160)(34,58,161)(35,59,162)(36,60,154)(73,87,111)(74,88,112)(75,89,113)(76,90,114)(77,82,115)(78,83,116)(79,84,117)(80,85,109)(81,86,110)(91,136,122)(92,137,123)(93,138,124)(94,139,125)(95,140,126)(96,141,118)(97,142,119)(98,143,120)(99,144,121)(100,153,130)(101,145,131)(102,146,132)(103,147,133)(104,148,134)(105,149,135)(106,150,127)(107,151,128)(108,152,129), (1,77,50)(2,78,51)(3,79,52)(4,80,53)(5,81,54)(6,73,46)(7,74,47)(8,75,48)(9,76,49)(10,89,26)(11,90,27)(12,82,19)(13,83,20)(14,84,21)(15,85,22)(16,86,23)(17,87,24)(18,88,25)(28,100,137)(29,101,138)(30,102,139)(31,103,140)(32,104,141)(33,105,142)(34,106,143)(35,107,144)(36,108,136)(37,70,114)(38,71,115)(39,72,116)(40,64,117)(41,65,109)(42,66,110)(43,67,111)(44,68,112)(45,69,113)(55,147,126)(56,148,118)(57,149,119)(58,150,120)(59,151,121)(60,152,122)(61,153,123)(62,145,124)(63,146,125)(91,154,129)(92,155,130)(93,156,131)(94,157,132)(95,158,133)(96,159,134)(97,160,135)(98,161,127)(99,162,128), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,131)(2,130)(3,129)(4,128)(5,127)(6,135)(7,134)(8,133)(9,132)(10,147)(11,146)(12,145)(13,153)(14,152)(15,151)(16,150)(17,149)(18,148)(19,124)(20,123)(21,122)(22,121)(23,120)(24,119)(25,118)(26,126)(27,125)(28,116)(29,115)(30,114)(31,113)(32,112)(33,111)(34,110)(35,109)(36,117)(37,139)(38,138)(39,137)(40,136)(41,144)(42,143)(43,142)(44,141)(45,140)(46,97)(47,96)(48,95)(49,94)(50,93)(51,92)(52,91)(53,99)(54,98)(55,89)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,90)(64,108)(65,107)(66,106)(67,105)(68,104)(69,103)(70,102)(71,101)(72,100)(73,160)(74,159)(75,158)(76,157)(77,156)(78,155)(79,154)(80,162)(81,161)>;
G:=Group( (1,109,25)(2,110,26)(3,111,27)(4,112,19)(5,113,20)(6,114,21)(7,115,22)(8,116,23)(9,117,24)(10,78,42)(11,79,43)(12,80,44)(13,81,45)(14,73,37)(15,74,38)(16,75,39)(17,76,40)(18,77,41)(28,120,133)(29,121,134)(30,122,135)(31,123,127)(32,124,128)(33,125,129)(34,126,130)(35,118,131)(36,119,132)(46,70,84)(47,71,85)(48,72,86)(49,64,87)(50,65,88)(51,66,89)(52,67,90)(53,68,82)(54,69,83)(55,92,106)(56,93,107)(57,94,108)(58,95,100)(59,96,101)(60,97,102)(61,98,103)(62,99,104)(63,91,105)(136,149,157)(137,150,158)(138,151,159)(139,152,160)(140,153,161)(141,145,162)(142,146,154)(143,147,155)(144,148,156), (1,12,71)(2,13,72)(3,14,64)(4,15,65)(5,16,66)(6,17,67)(7,18,68)(8,10,69)(9,11,70)(19,38,50)(20,39,51)(21,40,52)(22,41,53)(23,42,54)(24,43,46)(25,44,47)(26,45,48)(27,37,49)(28,61,155)(29,62,156)(30,63,157)(31,55,158)(32,56,159)(33,57,160)(34,58,161)(35,59,162)(36,60,154)(73,87,111)(74,88,112)(75,89,113)(76,90,114)(77,82,115)(78,83,116)(79,84,117)(80,85,109)(81,86,110)(91,136,122)(92,137,123)(93,138,124)(94,139,125)(95,140,126)(96,141,118)(97,142,119)(98,143,120)(99,144,121)(100,153,130)(101,145,131)(102,146,132)(103,147,133)(104,148,134)(105,149,135)(106,150,127)(107,151,128)(108,152,129), (1,77,50)(2,78,51)(3,79,52)(4,80,53)(5,81,54)(6,73,46)(7,74,47)(8,75,48)(9,76,49)(10,89,26)(11,90,27)(12,82,19)(13,83,20)(14,84,21)(15,85,22)(16,86,23)(17,87,24)(18,88,25)(28,100,137)(29,101,138)(30,102,139)(31,103,140)(32,104,141)(33,105,142)(34,106,143)(35,107,144)(36,108,136)(37,70,114)(38,71,115)(39,72,116)(40,64,117)(41,65,109)(42,66,110)(43,67,111)(44,68,112)(45,69,113)(55,147,126)(56,148,118)(57,149,119)(58,150,120)(59,151,121)(60,152,122)(61,153,123)(62,145,124)(63,146,125)(91,154,129)(92,155,130)(93,156,131)(94,157,132)(95,158,133)(96,159,134)(97,160,135)(98,161,127)(99,162,128), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,131)(2,130)(3,129)(4,128)(5,127)(6,135)(7,134)(8,133)(9,132)(10,147)(11,146)(12,145)(13,153)(14,152)(15,151)(16,150)(17,149)(18,148)(19,124)(20,123)(21,122)(22,121)(23,120)(24,119)(25,118)(26,126)(27,125)(28,116)(29,115)(30,114)(31,113)(32,112)(33,111)(34,110)(35,109)(36,117)(37,139)(38,138)(39,137)(40,136)(41,144)(42,143)(43,142)(44,141)(45,140)(46,97)(47,96)(48,95)(49,94)(50,93)(51,92)(52,91)(53,99)(54,98)(55,89)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,90)(64,108)(65,107)(66,106)(67,105)(68,104)(69,103)(70,102)(71,101)(72,100)(73,160)(74,159)(75,158)(76,157)(77,156)(78,155)(79,154)(80,162)(81,161) );
G=PermutationGroup([[(1,109,25),(2,110,26),(3,111,27),(4,112,19),(5,113,20),(6,114,21),(7,115,22),(8,116,23),(9,117,24),(10,78,42),(11,79,43),(12,80,44),(13,81,45),(14,73,37),(15,74,38),(16,75,39),(17,76,40),(18,77,41),(28,120,133),(29,121,134),(30,122,135),(31,123,127),(32,124,128),(33,125,129),(34,126,130),(35,118,131),(36,119,132),(46,70,84),(47,71,85),(48,72,86),(49,64,87),(50,65,88),(51,66,89),(52,67,90),(53,68,82),(54,69,83),(55,92,106),(56,93,107),(57,94,108),(58,95,100),(59,96,101),(60,97,102),(61,98,103),(62,99,104),(63,91,105),(136,149,157),(137,150,158),(138,151,159),(139,152,160),(140,153,161),(141,145,162),(142,146,154),(143,147,155),(144,148,156)], [(1,12,71),(2,13,72),(3,14,64),(4,15,65),(5,16,66),(6,17,67),(7,18,68),(8,10,69),(9,11,70),(19,38,50),(20,39,51),(21,40,52),(22,41,53),(23,42,54),(24,43,46),(25,44,47),(26,45,48),(27,37,49),(28,61,155),(29,62,156),(30,63,157),(31,55,158),(32,56,159),(33,57,160),(34,58,161),(35,59,162),(36,60,154),(73,87,111),(74,88,112),(75,89,113),(76,90,114),(77,82,115),(78,83,116),(79,84,117),(80,85,109),(81,86,110),(91,136,122),(92,137,123),(93,138,124),(94,139,125),(95,140,126),(96,141,118),(97,142,119),(98,143,120),(99,144,121),(100,153,130),(101,145,131),(102,146,132),(103,147,133),(104,148,134),(105,149,135),(106,150,127),(107,151,128),(108,152,129)], [(1,77,50),(2,78,51),(3,79,52),(4,80,53),(5,81,54),(6,73,46),(7,74,47),(8,75,48),(9,76,49),(10,89,26),(11,90,27),(12,82,19),(13,83,20),(14,84,21),(15,85,22),(16,86,23),(17,87,24),(18,88,25),(28,100,137),(29,101,138),(30,102,139),(31,103,140),(32,104,141),(33,105,142),(34,106,143),(35,107,144),(36,108,136),(37,70,114),(38,71,115),(39,72,116),(40,64,117),(41,65,109),(42,66,110),(43,67,111),(44,68,112),(45,69,113),(55,147,126),(56,148,118),(57,149,119),(58,150,120),(59,151,121),(60,152,122),(61,153,123),(62,145,124),(63,146,125),(91,154,129),(92,155,130),(93,156,131),(94,157,132),(95,158,133),(96,159,134),(97,160,135),(98,161,127),(99,162,128)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,131),(2,130),(3,129),(4,128),(5,127),(6,135),(7,134),(8,133),(9,132),(10,147),(11,146),(12,145),(13,153),(14,152),(15,151),(16,150),(17,149),(18,148),(19,124),(20,123),(21,122),(22,121),(23,120),(24,119),(25,118),(26,126),(27,125),(28,116),(29,115),(30,114),(31,113),(32,112),(33,111),(34,110),(35,109),(36,117),(37,139),(38,138),(39,137),(40,136),(41,144),(42,143),(43,142),(44,141),(45,140),(46,97),(47,96),(48,95),(49,94),(50,93),(51,92),(52,91),(53,99),(54,98),(55,89),(56,88),(57,87),(58,86),(59,85),(60,84),(61,83),(62,82),(63,90),(64,108),(65,107),(66,106),(67,105),(68,104),(69,103),(70,102),(71,101),(72,100),(73,160),(74,159),(75,158),(76,157),(77,156),(78,155),(79,154),(80,162),(81,161)]])
126 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | ··· | 3AO | 6A | 6B | 9A | ··· | 9CC |
order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 9 | ··· | 9 |
size | 1 | 81 | 1 | 1 | 2 | ··· | 2 | 81 | 81 | 2 | ··· | 2 |
126 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | S3 | C3×S3 | D9 | C3×S3 | C3×D9 |
kernel | C3×C32⋊4D9 | C33×C9 | C32⋊4D9 | C32×C9 | C32×C9 | C34 | C3×C9 | C33 | C33 | C32 |
# reps | 1 | 1 | 2 | 2 | 12 | 1 | 24 | 27 | 2 | 54 |
Matrix representation of C3×C32⋊4D9 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
17 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 9 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,11],[17,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,17,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,17,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,17,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×C32⋊4D9 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes_4D_9
% in TeX
G:=Group("C3xC3^2:4D9");
// GroupNames label
G:=SmallGroup(486,240);
// by ID
G=gap.SmallGroup(486,240);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,3134,986,867,3244,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations